

.NET GC Internals

Allocations
@konradkokosa / @dotnetosorg

1 / 29

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

2 / 29

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Generations - physical organization, card tables, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

3 / 29

Bump pointer allocator

4 / 29

Bump pointer allocator

5 / 29

Bump pointer allocator

6 / 29

Bump pointer allocator

7 / 29

Bump pointer allocator

Allocation quantum – 8 kB (1-8kB)

8 / 29

9 / 29

"Dummy" bump pointer allocation and fragmentation problem:

(a) Sweeping Garbage Collection produces fragmentation and if allocation
context is not aware of free memory - sad :(,
(b) Compact Garbage Collection reclaims memory by pushing back allocation
context but requires a lot of memory copying

10 / 29

"Smart" bump pointer allocation reuses free space!

11 / 29

"Smart" bump pointer allocation reuses free space!

(*) we will return to that!

11 / 29

12 / 29

Compacting still makes sense - from time to time!

13 / 29

Free-list allocator

14 / 29

Free-list allocator

searching through a free items list to �nd a gap big enough

15 / 29

Free-list allocator

searching through a free items list to �nd a gap big enough
best-�t - the smallest block �tting (little leftovers)

15 / 29

Free-list allocator

searching through a free items list to �nd a gap big enough
best-�t - the smallest block �tting (little leftovers)
�rst-�t - the �rst block �tting (faster but leftovers)

15 / 29

Free-list allocator

searching through a free items list to �nd a gap big enough
best-�t - the smallest block �tting (little leftovers)
�rst-�t - the �rst block �tting (faster but leftovers)
buckets - �rst-�t into of buckets of various size ranges

15 / 29

Free-list allocator

searching through a free items list to �nd a gap big enough
best-�t - the smallest block �tting (little leftovers)
�rst-�t - the �rst block �tting (faster but leftovers)
buckets - �rst-�t into of buckets of various size ranges

in .NET free list is (partially) stored on the heap itself
"free object" with a prede�ned MT
keeps size as an array
keeps address of the next "free object" (single-linked list)
keeps special "undo" address
for sizes >= 2*minimum object size

15 / 29

Free-list allocator - Buckets as metadata

For gen 0 and 1 - free item is being discarded (becomes unusable fragmentation) if
it fails to �t the required size.

16 / 29

Free-list allocator - Buckets as metadata

For gen 0 and 1 - free item is being discarded (becomes unusable fragmentation) if
it fails to �t the required size.

Hola! Why we need gen 1 and 2 for free-list allocation?!
16 / 29

Free-list allocator

Undo is used to... undo planned free-items usage (for compacting) if sweeping has
been decided. In other words - to revert typical "unlink" operation on single-linked
list element.

17 / 29

Allocation... creating a new object

18 / 29

Creating a new object

var obj = new SomeClass();

becomes

newobj instance void SomeClass::.ctor()

Question:

who resets object's �elds to defaults?
who decides where to allocate (SOH/LOH)?

19 / 29

newobj's JIT decision path

20 / 29

newobj's JIT decision path

InitJITHelpers1 initializes "fast helpers" in JIT, like CORINFO_HELP_NEWSFAST or
CORINFO_HELP_NEWARR_1_VC. BTW, JIT_NewS_MP_FastPortable on non-Windows also uses
allocation context. 20 / 29

Small Object Heap allocation

mostly - bump-pointer allocation inside the current allocation context
JIT_TrialAllocSFastMP_InlineGetThread

fallbacks to JIT_NEW in case of allocation context being full

21 / 29

; As input, rcx contains MethodTable pointer
; As result, rax contains new object address

LEAF_ENTRY JIT_TrialAllocSFastMP_InlineGetThread, _TEXT
 ; Read object size into edx
 ; m_BaseSize is guaranteed to be a multiple of 8.
 mov edx, [rcx + OFFSET__MethodTable__m_BaseSize]

 ; Read Thread Local Storage address into r11
 INLINE_GETTHREAD r11

 ; Read alloc_limit into r10
 mov r10, [r11 + OFFSET__Thread__m_alloc_context__alloc_limit]

 ; Read alloct_ptr into rax
 mov rax, [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr]

 add rdx, rax ; rdx = alloc_ptr + size
 cmp rdx, r10 ; is rdx smaller than alloc_limit
 ja AllocFailed

 ; Update alloc_ptr in TLS
 mov [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr], rdx

 ; Store MT under alloc_ptr address (constituting new object)
 mov [rax], rcx
 ret

AllocFailed:
 jmp JIT_NEW ; fast-path failed, jump to slow-path

LEAF_END JIT_TrialAllocSFastMP_InlineGetThread, _TEXT

22 / 29

JIT_NEW helper

The same as used for objects with �nalizer or in LOH.

"slower" C++ bump-pointer allocator (because it is generic for both SOH/LOH)
if fails, the whole story begins - the true "slow-path":

trying to use existing, unused space in. It will:
Try to use free list to �nd a suitable free gap for a new allocation context -
free-list allocation of a new allocation context
Try to adjust allocation limit inside already Commited memory
Try to Commit more memory from Reserved memory and adjust
allocation limit inside.

If all above fails, GC will be triggered
If all above fails - OutOfMemoryException :(

23 / 29

24 / 29

25 / 29

Large Object Heap allocation

free-list allocation and simpli�ed bump-pointer at the end of the segment
no use of allocation context
... thus synchronization overhead
... and memory zeroing overhead

only "slow-path":
try to use free list to �nd a suitable free gap for an object
in each segment containing LOH:

try to adjust allocation limit inside already Committed memory,
try to Commit more memory from Reserved memory and adjust
allocation limit inside

if all above fails, GC will be triggered.
If all above fails - OutOfMemoryException :(

26 / 29

Pinned Object Heap allocation

new allocation API: T[] GC.AllocateArray<T> (int length, bool pinned = false)
it adds GC_ALLOC_FLAGS.GC_ALLOC_PINNED_OBJECT_HEAP �ag to AllocateNewArray
in the end it calls allocate_uoh_object on poh_generation (#4)
which is shared between LOH and POH

27 / 29

https://docs.microsoft.com/en-us/dotnet/api/system.gc.allocatearray?view=net-5.0

Allocation overhead - summary

SOH - super-fast bump-pointer inside allocation context (AC) but...
fallback to free-list �nding of new AC or extending commit/reserve segment
... which requires zeroing such a new AC
or the GC

LOH & POH - dominated by zeroing cost (now, optional) and...
additionally synchronized
even more painful in LOH with the Concurrent GC - LOH allocations blocked
for (part) of the time of the Concurrent Sweep

"LOH Allocation Pause (due to background GC) > 200 Msec" section in
PerfView’s GCStats

stackalloc - only memory region zeroing cost (if not disabled 😍)

28 / 29

Allocations

"AllocateObject is calling in the end Object* GCHeap::Alloc (with �ags like
GC_ALLOC_FINALIZE or GC_ALLOC_LARGE_OBJECT_HEAP), calling allocate_uoh_object for
UOH (User Old Heap) - LOH & POH. Or calling gc_heap::allocate for SOH.

If the current allocation context is not enough, it calls
gc_heap::allocate_more_space and then gc_heap::try_allocate_more_space
internally."

29 / 29

